УДК 622.882(571.513):631.43 © А.Т. Лавриненко, А.Б. Килин, Н.А. Остапова, О.С. Сафронова, И.Н. Евсеева, Е.А. Моршнев, 2021

Реализация инновационных технологий рекультивации переуплотненных автомобильных отвалов угледобывающих предприятий Хакасии

DOI: http://dx.doi.org/10.18796/0041-5790-2021-5-80-83

ЛАВРИНЕНКО А.Т.

Старший научный сотрудник, заведующий группой рекультивации земель ФГБНУ «НИИАП Хакасии», 655132, с. Зеленое, Республика Хакасия, Россия, e-mail: aleks233@yandex.ru

КИЛИН А.Б.

Канд. техн. наук, генеральный директор ООО «СУЭК-Хакасия», 655162, г. Черногорск, Россия, e-mail: KilinAB@suek.ru

ОСТАПОВА Н.А.

Канд. техн. наук, старший научный сотрудник ФГБНУ «НИИАП Хакасии», 655132, с. Зеленое, Республика Хакасия, Россия, e-mail: niterlin@yandex.ru

САФРОНОВА О.С.

Младший научный сотрудник ФГБНУ «НИИАП Хакасии», 655132, с. Зеленое, Республика Хакасия, Россия, e-mail: olya_eqoshina@mail.ru

ЕВСЕЕВА И.Н.

Инженер-исследователь ФГБНУ «НИИАП Хакасии», 655132, с. Зеленое, Республика Хакасия, Россия, e-mail: evseeirina@yandex.ru

МОРШНЕВ Е.А.

Инженер-исследователь ФГБНУ «НИИАП Хакасии», 655132, с. Зеленое, Республика Хакасия, Россия, e-mail: morshnev86@mail.ru В статье рассмотрены инновационные технологии рекультивации и устройство для их реализации, а также оценка их эффективности на переуплотненных автомобильных отвалах угледобывающих предприятий.

Ключевые слова: рекультивация, автомобильные отвалы, агрегат.

Для цитирования: Реализация инновационных технологий рекультивации переуплотненных автомобильных отвалов угледобывающих предприятий Хакасии / А.Т. Лавриненко, А.Б. Килин, Н.А. Остапова и др. // Уголь. 2021. № 5. С. 80-83. DOI: 10.18796/0041-5790-2021-5-80-83.

ВВЕДЕНИЕ

Проблема защиты окружающей среды всегда была и остается чрезвычайно важной, особенно для промышленных регионов нашей страны. Воздействие горнодобывающей промышленности можно сравнить с «антропогенным орогенезом» и с «катастрофическими антропогенными», или, правильнее сказать, «техногенными сукцессиями» [1].

Многообразие условий и методов разработки угольных месторождений вызывает необходимость совершенствования технологических приемов рекультивации земель, нарушенных в процессе производственной деятельности шахт, разрезов и обогатительных фабрик. Как правило, площади, занимаемые отвалами в криоаридных зонах угледобычи, лишены достаточного ресурса плодородного почвенного слоя (ПСП), а процессы естественного почвообразования протекают крайне медленно [2]. Однако рекультивация техногенных земель значительно ускоряет процесс формирования почв и развитие фитоценоза [3, 4]. Работы по совершенствованию технологий рекультивации отвалов актуальны и соответствуют задачам охраны природы и улучшения санитарного состояния регионов угледобычи [5].

Основными причинами долговременного кризиса в рекультивации нарушенных земель является недостаточность научно обоснованных, экономически целесообразных технологий, обеспечивающих высокий эколо-

гический и социальный эффект. Как показывает практика, возможности широкомасштабного создания и применения технологий рекультивации по постоянной схеме с высоким экологическим эффектом и диагностикой почвенно-экологического состояния рекультивируемых территорий значительно ограничены дефицитом природных и материальных ресурсов [1] и уровнем ответственности угледобывающих компаний.

В последние годы проведены более глубокие исследования по разработке и использованию экономически и экологически эффективных технологий восстановления разрушенных территорий, которые дают возможность без серьезных затрат выполнять проектные решения угледобычи [6].

ЭКОЛОГО-ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ИСПОЛЬЗОВАНИЯ НОВОГО ОБОРУДОВАНИЯ ДЛЯ БИОЛОГИЧЕСКОЙ РЕКУЛЬТИВАЦИИ

Важнейшим фактором повышения эффективности угледобывающего производства, обеспечения высокой его эффективности был и остается научно-технический прогресс. Внедрение инновационных технологий и оборудования для их реализации, является неотъемлемой характеристикой современного конкурентоспособного предприятия на мировом уровне [7].

Для разработки экологически обоснованных и экономически эффективных технологий в области рекультивации отвалов Хакасии сотрудниками ФГБНУ «НИИАП Хакасии» проведены экспериментальные исследо-

вания на отвалах угольных предприятий ООО «СУЭК-Хакасия». Выявлены основные лимитирующие факторы развития почв и растительности на поверхности переуплотненных отвалов, которые были учтены при разработке новых методов рекультивации нарушенных земель в условиях резкоконтинентального криоаридного климата Республики Хакасия [8].

С целью создания оптимальных условий развития биоценоза на автомобильных отвалах необходимо провести локальное рыхление на глубину 1,2-1,8 м в виде щели с нарезкой на ее поверхности борозд, что дает возможность собирать влагу и мелкозем с бортов борозды на дно канала и в устье щели. Посев ленточным способом гранулированных семян донника желтого (Melilótus officinális L.) на дно борозд с одновременным поливом водным раствором препарата «Байкал ЭМ-1» создает оптимальные условия прорастания и развития этого мелиоранта с последующей посадкой саженцев древесно-кустарниковых пород под покров этой культуры (см. рисунок).

В АО «Черногорский ремонтно-механический завод» изготовлен опытный образец устройства АКН-1,3 (агрегат комплексный навесной), предназначенный для одновременного рыхления поверхности отвала на заданную глубину, формирования впадины с бортами по

Щель с посадкой саженцев лиственницы сибирской (Larix sibirica L.) в дернину предшествующих травяных культур

краям, высева ленточным способом семян, с последующей их заделкой, прикатыванием и поливом раствором с использованием биопрепарата «Байкал ЭМ-1». Это дает возможность посадку древесно-кустарниковых пород производить в дернину предшествующих травяных культур с одновременным внесением в посадочную лунку фосфорного удобрения [9].

Промышленное испытание агрегата проведено в 2020 г., выявлены и устранены ошибки опытно-конструкторского проекта. Опытный образец отвечает требованиям заданного технологического процесса, запасу прочности и долговечности. Эффективность навесного агрегата обеспечивает ускоренную деградацию поверхности борозды за счет осыпания мелкозема в щель вместе с атмосферной влагой, ее заполнение и накапливание в устье щели для посева трав с последующей посадкой древеснокустарниковых пород.

Проведенные институтом и заводом-изготовителем промышленные опыты подготовки поверхности валовых отвалов с посевом многолетних трав и посадкой древеснокустарниковых пород подтверждают возможность высокоэффективного использования навесного агрегата для биологической рекультивации [8, 10].

Оптимизация затрат на восстановление нарушенных угледобычей территорий по предложенной технологии

Затраты на проведение рекультивации техногенно нарушенных земель по различным технологиям

Технология рекультивации	Технологические операции	Сметная стоимость 1 га, тыс. руб.
Рекультивация отвалов по запатентованным технологиям ФГБНУ «НИИАП Хакасии»	 — Щелевание агрегатом АКН-1,3 с одновременным посевом многолетних трав в борозды; — Подготовка стандартных посадочных мест в естественном грунте и посадка древесных видов по очаговой технологии; — Обработка посадок биопрепаратом; — Полив и уход за зелеными насаждениями. 	82,6
Классическая технология рекультивации по ГОСТу. Проект реконструкции разреза «Черногорский». 2007 г. Смета рекультивации / Фактическая стоимость проведенных рекультивационных мероприятий	 Технический этап рекультивации (горнотехническая рекультивация): снятие и складирование плодородного слоя почвы; планировка поверхности; транспортирование и нанесение плодородных почв на рекультивируемую поверхность; строительство осушительной и водоподводящей сети каналов; устройство противоэрозионных сооружений. Биологический этап рекультивации: вспашка без отвалов, с углублением, боронование; внесение удобрения с минералами; высадка многолетних трав, деревьев и кустарников по принятым нормам высева; уход за растениями 	1244 / 860

и повышение экологической эффективности рекультивации достигаются за счет:

- обоснованного отказа от снятия, буртования и хранения материала ПСП [11];
- снижения затрат и времени на техническую и биологическую рекультивацию переуплотненных отвалов и создания оптимальных, по питательным, тепловым и влажностным параметрам, агротехнических условий биологической рекультивации в лесном направлении за счет комплексного проведения технологических операций навесным агрегатом [9];
- очаговой технологии посадки древесных культур при биологической рекультивации, отличающейся тем, что посадку проводят во впадины ячеистой поверхности отвалов или борозды на 26-50 процентах поверхности отвалов, в зависимости от годовых норм осадков [12];
- использования специализированных подразделений, имеющих свою технику и плодопитомники, а также высокопрофессиональных специалистов, способных вести круглогодичные работы по рекультивации и уходу за посадками и посевами, а также сдачи рекультивированных площадей землевладельцам или в земельный фонд региона.

Сравнительная характеристика затрат на проведение рекультивационных мероприятий по разработанным технологиям ФГБНУ «НИИАП Хакасии» и технологии рекультивации по ГОСТу приведена в таблице.

Экономическая эффективность инноваций оказалась на порядок больше затрат на их создание и внедрение [13].

выводы

Научно обоснованные, инновационные технологии, созданные и опробованные на предприятии ООО «СУЭК-Хакасия», позволяют уменьшить затраты в десятки раз при проведении рекультивационных мероприятий и создать в степной зоне горный рельеф с благоприятными климатическими условиями для развития биологического разнообразия за счет разрастания очаговых посевов по всей территории горных отвалов заданного микробиологического сообщества [12].

Список литературы

- 1. Водолеев А.С. Рекультивация техногенно нарушенных земель южного Кузбасса с использованием нетрадиционных мелиорантов: дис. ... доктора сель.-хоз. наук. Алтайский государственный аграрный университет, 2007. 362 с.
- 2. Макеева Н.А., Неверова О.А. Обзор методов ускоренной рекультивации нарушенных угледобычей земель // Вестник КрасГАУ. 2016. № 8. С. 77-86.
- 3. Бурыкин А.М., Засорина Э.В. Процессы минерализации и гумификации растительных остатков в молодых почвах техногенных экосистем // Почвоведение. 1989. № 2. C. 61-78.
- 4. Кожевников Н.В., Заушинцена А.В. Проблема ускоренного почвообразования в рекультивации нарушенных земель // Вестник КемГУ. 2015. № 1-2 (61). С. 26-29.
- 5. Чибрик Т.С., Батурин Г.И. Биологическая рекультивация нарушенных промышленностью земель. Екатеринбург: Издательство Уральского университета, 2003. 36 с.
- 6. Биологическая рекультивация нарушенных земель на Ямале: Рекомендации / РАСХН. Сибирское отделение. НПО «Северное Зауралье». Ямальская сельскохозяйственная опытная станция. Новосибирск, 1994. 48 с.
- 7. Кореняко А.А. Оценка экономической эффективности внедрения инновационного оборудования // Вестник ТГУ. 2011. Вып. 10 (102). С. 70-75.
- 8. Биологическая рекультивация переуплотнённых автомобильных отвалов угледобывающих предприятий / А.Т. Лавриненко, Н.А. Остапова, О.С. Сафронова и др. // Уголь. 2020. № 7. С. 92-95. DOI: 10.18796/0041-5790-2020-7-92-95.
- 9. Пат. 2704853 РФ. МПК Е 21С 41/32 (2006.01). Навесной агрегат для биологической рекультивации переуплотненных автомобильных отвалов угледобывающих пред-

приятий / А.Т. Лавриненко. Заявитель и патентообладатель ФГБНУ НИИАП Хакасии (RU). № 2018105829/03; заявл. 15.02.2018; опубл. 31.10.2019. Бюл. № 31. 6 с.

10. Опыт использования древесно-кустарниковых пород для биологической рекультивации переуплотненных отвалов автомобильной отсыпки на разрезе «Черногорский» ООО «СУЭК–Хакасия» / А.Т. Лавриненко, Н.А. Остапова, О.С. Сафронова и др. // Уголь. 2020. № 10. С. 52-55. DOI: 10.18796/0041-5790-2020-10-52-55.

11. Пат. 2359127 РФ. МПК Е 21 С 41/32 (2006.01). Способ формирования и подготовки внешних отвалов и карьерных выемок для биологической рекультивации / А.Т. Лав-

риненко. Заявитель и патентообладатель ГНУ НИИАП Ха-касии СО РАСХН (RU). № 2007108870/03; заявл. 09.03.2007; опубл. 20.06.2009. Бюл. № 17. 5 с.

12. Пат. 2343286 РФ. МПК Е 21С 41/32 (2006.01). Очаговый способ рекультивации горных отвалов / А.Т. Лавриненко. Заявитель и патентообладатель ГНУ НИИАП Хакасии СО РАСХН (RU). № 2007117479/03; заявл. 10.05.2007; опубл. 10.01.2009. Бюл. № 1. 4 с.

13. Лавриненко А.Т., Моршнев Е.А. Инновационные методы рекультивации отвалов угледобывающих предприятий в криоаридных условиях Средней Сибири // Уголь. 2018. № 10. С. 94-97. DOI: 10.18796/0041-5790-2018-10-94-97.

ECOLOGY

Original Paper

UDC 622.882(571.513):631.43 © A.T. Lavrinenko, A.B. Kilin, N.A. Ostapova, O.S. Safronova, I.N. Evseeva, E.A. Morshnev, 2021 ISSN 0041-5790 (Print) • ISSN 2412-8333 (Online) • Ugol′ – Russian Coal Journal, 2021, № 5, pp. 80-83 DOI: http://dx.doi.org/10.18796/0041-5790-2021-5-80-83

Title

IMPLEMENTATION OF INNOVATIVE TECHNOLOGIES FOR RECLAMATION OF OVERCONSOLIDATED DUMPS OF COAL MINING ENTERPRISES IN KHAKASSIA

Authors

Lavrinenko A.T.¹, Kilin A.B.², Ostapova N.A.¹, Safronova O.S.¹, Evseeva I.N.¹, Morshnev E.A.¹

- $^{1}\text{``Scientific-Research Institute of Agrarian Problems of Khakassia''} FSBI, Zelenoe\ village, 655132, Republic of Khakassia, Russian Federation$
- ² "SUEK-Khakassia" LLC, Chernogorsk, 655162, Russian Federation

Authors' Information

Lavrinenko A.T., Senior Researcher, Head land reclamation group, aleks233@vandex.ru

Kilin A.B., PhD (Engineering), General Director, e-mail: KilinAB@suek.ru Ostapova N.A., PhD (Engineering), Senior Researcher, e-mail: niterlin@yandex.ru

Safronova O.S., Junior Researcher, e-mail: olya_egoshina@mail.ru **Evseeva I.N.,** Engineer-Researcher, e-mail: evseeirina@yandex.ru **Morshnev E.A.,** Engineer-Researcher, e-mail: morshnev86@mail.ru

Abstract

The paper discusses innovative reclamation technologies and a device for their implementation, as well as an assessment of the effectiveness of the application of these developments on overcompacted automobile dumps of coal mining enterprises.

Kevwords

Reclamation, Car dumps, Unit.

References

- 1. Vodoleev AS Reclamation of technogenically disturbed lands of the southern Kuzbass using non-traditional ameliorants. Diss. dr. s.-kh. sciences. Altai State Agrarian University, 2007, 362 p. (In Russ.).
- 2. Makeeva N.A. & Neverova O.A. Review of methods for accelerated reclamation of disturbed coal mining lands. *Bulletin of KrasGAU*, 2016, (8), pp. 77-86. (in Russ.).
- 3. Burykin A.M. & Zasorina E.V. Processes of mineralization and humification of plant residues in young soils of technogenic ecosystems. *Pochvovedenie*, 1989, (2), pp. 61-78. (In Russ.).
- 4. Kozhevnikov N.V. & Zaushintsena A.V. The problem of accelerated soil formation in the reclamation of disturbed lands. *Vestnik KemSU*, 2015, No. 1-2 (61), pp. 26-29. (In Russ.).
- 5. Chibrik T.S. & Baturin G.I. Biological recultivation of lands disturbed by industry. Yekaterinburg, Publishing house Ural University, 2003, 36 p. (in Russ.). 6. Biological reclamation of disturbed lands in Yamal: Recommendations / RAAS. Sib. separation. NPO "Northern Trans-Urals". Yamal Agricultural Experimental Station. Novosibirsk, 1994, 48 p. (In Russ.).
- 7. Korenyako A.A. Assessment of the economic efficiency of the introduction of innovative equipment. *TSU Bulletin*, 2011, Iss. 10 (102), pp. 70-75. (In Tuss.).

- 8. Lavrinenko A.T., Ostapova N.A., Safronova O.S., Kilin A.B., Evseeva I.N. & Morshnev E.A. Biological reclamation of re-compacted automobile dumps of coal mining enterprises. *Ugol'*, 2020, (7), pp. 92-95. (In Russ.). DOI: 10.18796/0041-5790-2020-7-92-95.
- 9. Attached unit for biological reclamation of overconsolidated car dumps of coal mining enterprises / A.T. Lavrinenko: Pat. 2704853 RF. IPC E 21C 41/32 (2006.01). Applicant and patentee of FGBNU NIIAP Khakassia (RU). No. 2018105829/03; declared 02/15/2018; publ. 31.10.2019, Bul., No. 31, 6 p. (In Russ.).
- 10. Lavrinenko A.T., Ostapova N.A., Safronova O.S., Shapovalenko G.N., Evseeva I.N. & Morshnev E.A. Experience in using tree and shrub species for biological reclamation of over-compacted dumps of automobile dumping at the "Chernogorsky" open-pit mine of "SUEK-Khakassia" LLC. *Ugol'*, 2020, (10), pp. 52-55. (In Russ.). DOI: 10.18796/0041-5790-2020-10-52-55.
- 11. Method of formation and preparation of external dumps and quarry excavations for biological reclamation / A.T. Lavrinenko: Pat. 2359127 RF. IPC E 21 S 41/32 (2006.01). Applicant and patentee GNU NIIAP Khakassia SO RAAS (RU). No. 2007108870/03; declared 03/09/2007; publ. 20.06.2009, Bul. No. 17. 5 p. (In Russ.).
- 12. Focal method of reclamation of mountain dumps / AT. Lavrinenko: Pat. 2343286 RF. IPC E 21C 41/32 (2006.01). Applicant and patentee GNU NIIAP Khakassia SO RAAS (RU). No. 2007117479/03; declared 05/10/2007; publ. 10.01.2009, Bul., No. 1, 4 p. (In Russ.).
- 13. Lavrinenko A.T. & Morshnev E.A. Innovative methods of re-cultivation of dumps of coal–mining enterprises in cryoarid conditions of Middle Siberia. Ugol', 2018, (10), pp. 94-97. (In Russ.). DOI: 10.18796/0041-5790-2018-10-94-97.

For citation

Lavrinenko A.T., Kilin A.B., Ostapova N.A., Safronova O.S., Evseeva I.N. & Morshnev E.A. Implementation of innovative technologies for reclamation of overconsolidated dumps of coal mining enterprises in Khakassia. *Ugol*, 2021, (5), pp. 80-83. (In Russ.). DOI: 10.18796/0041-5790-2021-5-80-83.

Paper info

Received February 12, 2021 Reviewed March 15, 2021 Accepted April 15, 2021